3.572 \(\int \frac{1}{\sqrt{x} \sqrt{a+b x}} \, dx\)

Optimal. Leaf size=28 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )}{\sqrt{b}} \]

[Out]

(2*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]])/Sqrt[b]

________________________________________________________________________________________

Rubi [A]  time = 0.0127668, antiderivative size = 28, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {63, 217, 206} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )}{\sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*Sqrt[a + b*x]),x]

[Out]

(2*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]])/Sqrt[b]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{x} \sqrt{a+b x}} \, dx &=2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\sqrt{x}\right )\\ &=2 \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sqrt{x}}{\sqrt{a+b x}}\right )\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )}{\sqrt{b}}\\ \end{align*}

Mathematica [A]  time = 0.012968, size = 50, normalized size = 1.79 \[ \frac{2 \sqrt{a} \sqrt{\frac{b x}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{\sqrt{b} \sqrt{a+b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*Sqrt[a + b*x]),x]

[Out]

(2*Sqrt[a]*Sqrt[1 + (b*x)/a]*ArcSinh[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/(Sqrt[b]*Sqrt[a + b*x])

________________________________________________________________________________________

Maple [B]  time = 0.002, size = 48, normalized size = 1.7 \begin{align*}{\sqrt{x \left ( bx+a \right ) }\ln \left ({ \left ({\frac{a}{2}}+bx \right ){\frac{1}{\sqrt{b}}}}+\sqrt{b{x}^{2}+ax} \right ){\frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/(b*x+a)^(1/2),x)

[Out]

(x*(b*x+a))^(1/2)/x^(1/2)/(b*x+a)^(1/2)*ln((1/2*a+b*x)/b^(1/2)+(b*x^2+a*x)^(1/2))/b^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.79051, size = 162, normalized size = 5.79 \begin{align*} \left [\frac{\log \left (2 \, b x + 2 \, \sqrt{b x + a} \sqrt{b} \sqrt{x} + a\right )}{\sqrt{b}}, -\frac{2 \, \sqrt{-b} \arctan \left (\frac{\sqrt{b x + a} \sqrt{-b}}{b \sqrt{x}}\right )}{b}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a)/sqrt(b), -2*sqrt(-b)*arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x
)))/b]

________________________________________________________________________________________

Sympy [A]  time = 1.1561, size = 22, normalized size = 0.79 \begin{align*} \frac{2 \operatorname{asinh}{\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}} \right )}}{\sqrt{b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/(b*x+a)**(1/2),x)

[Out]

2*asinh(sqrt(b)*sqrt(x)/sqrt(a))/sqrt(b)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

Timed out